Статистика
Всего в нашей базе более 4 327 664 вопросов и 6 445 978 ответов!

Сколько решений имеет система уравнений.

5-9 класс

Помогите пожалуйста вместе с решением!

Natal2891 18 дек. 2013 г., 17:12:34 (10 лет назад)
Рейтинг
+ 0 -
0 Жалоба
+ 0 -
Alinamuza2005
18 дек. 2013 г., 19:02:42 (10 лет назад)

Сначала подставляешь значение у во второй пример. Затем, решаешь квадратное уравнение, которое получилось. Там получится 2 корня (-3 и -1 по теореме Виета, впрочем можно через дискриминант, ну это не важно))Потом получаются 2 системки - с 2 значениями х. В этих двух системках подставляешь иксы по выражение, которое равно игрэку. В итоге, получаются 2 решения: (-3;22) и (-1;6)

Ответить

Читайте также

1.Какая из данных пар чисел (-6;8), (0;-3), (2;0) является решением системы уравнений

{х+у=2,
{3х-2у=6?
2. Решите графически систему уравнений {у=3х,
{х+у=4.
3. Сколько решений имеет система уравнений
{х-у=1
{3х-3у=-9?

1.какая из заданных пар чисел(7;-3), (2;-1),(3;0) является решением данной системы уравнений х-у=3 2х+5у=-1? 2.решите графически

систему уравнений

у=3х-1

2х+у=4

3.скрлько решений имеет система уравнений

-2х+у=0

-4х+2у=6

Сколько решений имеет система уравнений? Если система не имеет решений, то в ответ напишите 0, если

система имеет конечное число решений, то в ответе напишите 1, если система имеет бесконечное число решений, то в ответе напишите 8

ПРОШУ ПОМОГИТЕ СРОЧНО НУЖНО РЕШИТЬ СИСТЕМУ УРАВНЕНИЙ СЕГОДНЯ!!ЗАВТРА СДАВАТЬ РАБОТЫ!!

Сколько решений имеет система уравнений:
2x-y=7
-6x+3y=-21
варианты ответов:
1) 1 2) 2 3)бесчисленное количество 4) ни одного

Решите графически систему уравнений 1) x=1 (x-1) в квадрате + ( у+2) в квадрате = 9 2) ( х+2) в квадрате + ( у -2) в квадрате

=1

у= корень квадратный Х+1?

Сколько решений имеет система уравнений

1) у=2х-1

( х-1) в квадрате + ( у+2) в квадрате = 9



Вы находитесь на странице вопроса "Сколько решений имеет система уравнений.", категории "алгебра". Данный вопрос относится к разделу "5-9" классов. Здесь вы сможете получить ответ, а также обсудить вопрос с посетителями сайта. Автоматический умный поиск поможет найти похожие вопросы в категории "алгебра". Если ваш вопрос отличается или ответы не подходят, вы можете задать новый вопрос, воспользовавшись кнопкой в верхней части сайта.